A mathematical analysis of agonist- and KCl-induced Ca(2+) oscillations in mouse airway smooth muscle cells.

نویسندگان

  • Inga Y Wang
  • Yan Bai
  • Michael J Sanderson
  • James Sneyd
چکیده

Airway hyperresponsiveness is a major characteristic of asthma and is generally ascribed to excessive airway narrowing associated with the contraction of airway smooth muscle cells (ASMCs). ASMC contraction is initiated by a rise in intracellular calcium concentration ([Ca(2+)](i)), observed as oscillatory Ca(2+) waves that can be induced by either agonist or high extracellular K(+) (KCl). In this work, we present a model of oscillatory Ca(2+) waves based on experimental data that incorporate both the inositol trisphosphate receptor and the ryanodine receptor. We then combined this Ca(2+) model and our modified actin-myosin cross-bridge model to investigate the role and contribution of oscillatory Ca(2+) waves to contractile force generation in mouse ASMCs. The model predicts that: 1), the difference in behavior of agonist- and KCl-induced Ca(2+) waves results principally from the fact that the sarcoplasmic reticulum is depleted during agonist-induced oscillations, but is overfilled during KCl-induced oscillations; 2), regardless of the order in which agonist and KCl are added into the cell, the resulting [Ca(2+)](i) oscillations will always be the short-period, agonist-induced-like oscillations; and 3), both the inositol trisphosphate receptor and the ryanodine receptor densities are higher toward one end of the cell. In addition, our results indicate that oscillatory Ca(2+) waves generate less contraction than whole-cell Ca(2+) oscillations induced by the same agonist concentration. This is due to the spatial inhomogeneity of the receptor distributions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The contribution of inositol 1,4,5-trisphosphate and ryanodine receptors to agonist-induced Ca signaling of airway smooth muscle cells

Bai Y, Edelmann M, Sanderson MJ. The contribution of inositol 1,4,5-trisphosphate and ryanodine receptors to agonist-induced Ca signaling of airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 297: L347–L361, 2009. First published May 22, 2009; doi:10.1152/ajplung.90559.2008.—The relative contribution of inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) and ryanodine receptors (Ry...

متن کامل

The Frequency of Calcium Oscillations Induced by 5-HT, ACH, and KCl Determine the Contraction of Smooth Muscle Cells of Intrapulmonary Bronchioles

Increased resistance of airways or blood vessels within the lung is associated with asthma or pulmonary hypertension and results from contraction of smooth muscle cells (SMCs). To study the mechanisms regulating these contractions, we developed a mouse lung slice preparation containing bronchioles and arterioles and used phase-contrast and confocal microscopy to correlate the contractile respon...

متن کامل

The Contraction of Smooth Muscle Cells of Intrapulmonary Arterioles Is Determined by the Frequency of Ca2+ Oscillations Induced by 5-HT and KCl

Increased resistance of the small blood vessels within the lungs is associated with pulmonary hypertension and results from a decrease in size induced by the contraction of their smooth muscle cells (SMCs). To study the mechanisms that regulate the contraction of intrapulmonary arteriole SMCs, the contractile and Ca(2+) responses of the arteriole SMCs to 5-hydroxytrypamine (5-HT) and KCl were o...

متن کامل

Nitric oxide induces airway smooth muscle cell relaxation by decreasing the frequency of agonist-induced Ca2+ oscillations

Nitric oxide (NO) induces airway smooth muscle cell (SMC) relaxation, but the underlying mechanism is not well understood. Consequently, we investigated the effects of NO on airway SMC contraction, Ca(2+) signaling, and Ca(2+) sensitivity in mouse lung slices with phase-contrast and confocal microscopy. Airways that were contracted in response to the agonist 5-hydroxytryptamine (5-HT) transient...

متن کامل

The contribution of Ca2+ signaling and Ca2+ sensitivity to the regulation of airway smooth muscle contraction is different in rats and mice.

To determine the relative contributions of Ca(2+) signaling and Ca(2+) sensitivity to the contractility of airway smooth muscle cells (SMCs), we compared the contractile responses of mouse and rat airways with the lung slice technique. Airway contraction was measured by monitoring changes in airway lumen area with phase-contrast microscopy, whereas changes in intracellular calcium concentration...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 98 7  شماره 

صفحات  -

تاریخ انتشار 2010